Application of DJ method to Ito stochastic differential equations

author

Abstract:

‎This paper develops iterative method described by [V‎. ‎Daftardar-Gejji‎, ‎H‎. ‎Jafari‎, ‎An iterative method for solving nonlinear functional equations‎, ‎J‎. ‎Math‎. ‎Anal‎. ‎Appl‎. ‎316 (2006) 753-763] to solve Ito stochastic differential equations‎. ‎The convergence of the method for Ito stochastic differential equations is assessed‎. ‎To verify efficiency of method‎, ‎some examples are expressed‎.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

APPLICATION OF DIFFERENTIAL TRANSFORM METHOD TO SOLVE HYBRID FUZZY DIFFERENTIAL EQUATIONS

In this paper, we study the numerical solution of hybrid fuzzy differential equations by using differential transformation method (DTM). This is powerful method which consider the approximate solution of a nonlinear equation as an infinite series usually converging to the accurate solution. Several numerical examples are given and by comparing the numerical results obtained from DTM  and  predi...

full text

Computational Method for Fractional-Order Stochastic Delay Differential Equations

Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...

full text

Relation of a New Interpretation of Stochastic Differential Equations to Ito Process

Stochastic differential equations (SDE) are widely used in modeling stochastic dynamics in literature. However, SDE alone is not enough to determine a unique process. A specified interpretation for stochastic integration is needed. Different interpretations specify different dynamics. Recently, a new interpretation of SDE is put forward by one of us. This interpretation has a built-in Boltzmann...

full text

Stochastic differential equations and integrating factor

The aim of this paper is the analytical solutions the family of rst-order nonlinear stochastic differentialequations. We dene an integrating factor for the large class of special nonlinear stochasticdierential equations. With multiply both sides with the integrating factor, we introduce a deterministicdierential equation. The results showed the accuracy of the present work.

full text

A wavelet method for stochastic Volterra integral equations and its application to general stock model

In this article,we present a wavelet method for solving stochastic Volterra integral equations based on Haar wavelets. First, we approximate all functions involved in the problem by Haar Wavelets then, by substituting the obtained approximations in the problem, using the It^{o} integral formula and collocation points then, the main problem changes into a system of linear or nonlinear equation w...

full text

Application of Malliavin calculus to stochastic partial differential equations

The Malliavin calculus is an infinite dimensional calculus on a Gaussian space, which is mainly applied to establish the regularity of the law of nonlinear functionals of the underlying Gaussian process. Suppose that H is a real separable Hilbert space with scalar product denoted by 〈·, ·〉H . The norm of an element h ∈ H will be denoted by ‖h‖H . Consider a Gaussian family of random variables W...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 08  issue 03

pages  183- 189

publication date 2019-08-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023